

European Heart Journal (2013) 34, 2636–264 doi:10.1093/eurheartj/ehc210	8
Current state of knowledg management, and therapy a position statement of th of Cardiology Working G and Pericardial Diseases	e on aetiology, diagnosis, / of myocarditis: e European Society roup on Myocardial
Definition Contrast to the Control Contr	(1) Section (SVM) (2) SCC () (4) Section (SVM) (4) Section (SVM) (4) Section (SVM) (4) Section (SVM) (4) Section (SVM) (4) Section (SVM) (4) Section (SVM) (4) Section (SVM

Janus et al. 004 Veterlooy, Journal (2014) 6728 DOI 10.1186/118024-014-0028-8	
RESEARCH	Open Access
Myocarditis in dogs: eti histopathological featur tubela Jana ¹⁷ , Agnesia Nosczyk-Nował ² , Marcin I Porr Degel ¹⁴ and Kardina Jabiotska ¹	ology, clinical and res (11 cases: 2007–2013) Heaves ¹ , Acja Ceper ² , Refat Caputa ¹ , Uroscia Patavesa ¹ ,
 7/11 Dilated cardiomyopathy 4/11 Ventricular arrhythmias 6/11 + Borrelia B. 	
✓ 1/11 + Staphylococcus A.	
◆ 4/11 SCD	

e Causes of Canin vocardial Fibrosis / blecular Testing: R d Literature Revie	e Myocarditi Are Elusive b etrospective w	s and y Targeted Analysis	C The Androny) 2011 Article rease galetime: seguid-com/surrals-permissi DOI 18.1177/330968119829 poursit_segup.d.com/home/w	ana 341 K	
x Molesan ¹ , Laura Goodma santha J. Lovering ¹ , and Ka able 2. Polymerase Chain Rea	n ² , Jordan Ford ¹ , thleen Kelly ¹ ©	ectious Agents in Cani	ne Myocarditis Cases	and Controls by Age	Class.
	All Cases, No. Positive/Total No. (%; 95% Cl)	Cases <2 y. No. Positive/Total No. (%: 95% Cl)	Controls <2 y. No. Positive/Total No. (%; 95% Cl)	Cases >2 y, No. Positive/Total No. (%; 95% Cl)	Controls >2 y, No. Positive/Total No. (% 95% Cl)
ortonello spp	0/44	0/18	0/0	0/26	0/0
orreno spp tycopiasma haemocanis	3/54 (6; 1–16)	2/28 (7: 0-24)	1/35 (3; 0–16)	1/26 (4: 0-21)	0/22
anine adenovirus	3/52 (6; 1-16)	2/28 (7; 0-24)	1/35 (3: 0-16)	1/24 (4: 0-22)	0/22
anine respiratory coronavirus	1/54 (2; 0-11)	1/28 (4: 0–19)	1/35 (3: 0–16)	0/26	1/22 (5: 0-24)
anine parainfluenzavirus	(9; 4-20) 1/54	(18, 7–36) 1/28	(6: 0-20) 0/35	0/26	(23: 10-44) 0/22
nfuenza A	(2; 0-11) 0/54	(2; 0-19) 0/28	0/35	0/26	1/22
anine herpesvirus 1	3/50 (6; 1-17)	2/27 (7; 0-25)	8/35 (23; 12-39)	1/23 (4: 0-23)	0/0
Vest Nile virus	1/32 (3: 0–17)	0/18	0/0	1/14 (7: 0-31)	0/0
leaspora caninum	(24; 15–36) 7/49	(35; 22-50) 6/23	(5; 0–17) 9/35	(R; 0-25) 1/26	(18; 7-39) 3/22
bbreviation: CI, confidence interval Cases/controls <2 years from Ford	(14; 7-27) et al.44	(26; 12-47)	(26; 14-42)	(4: 0-21)	(14; 4–34)

MATHERIAL AND METHODS

- ✓ 47 dogs of different breeds,
- ✓ Gender
 - $\checkmark\,$ 30 males (5 in CHD group) and 17 females (5 in CHD group)
- ✓ Median age
 - ✓ 4 years (range 0.5 -11 years) UMRD group
- ✓ 2.5 years (range 0.7 6 years) CHD group
- ✓ Median body weight
 - ✓ 32 Kg (range 11.7 64.0 Kg) UMRD group
 - ✓ 29.7 Kg (range 15.0 51.0 Kg) CHD group

Histopathology

Light microscopy

- (slides 1, 6, 11, 16
- 21, and 24) 6 were evaluated histologically stain 2, 7, 12, 17, 22, and 23) MR sample was assessed by a single in eventory tic infla

Immunohistochemical analysis

Morphometric analysis

- stained with Mason trickrome stain were evaluated to quantify the extent of fibro-sis d as a percentage of the surface area). Magnification of 2,500X tained with H&S tain were evaluated to quantify the extent of hymphocytic tion (calculated as the number of hymphocytes per mm2). I al photo-editing fortware was used.

	Genor	nic sequence r	OLLI
rimers used for PCR assay, re- rom dogs with UMRD or CHE	verse transcriptase PCR as D during RV catheterization	ssay, or real-time PCR assay to detect pathogens in EM on.	IB samples collect
Purpose	Target gene	Primer sequence (5' to 3')	Reference
Control extraction			
DNA	GAPDH	F: GTTCCAGTATGATTCCACCC R: TCCCTCCACGATGCCAAA	20
RNA	Na*/K* ATPase α	F: GCTGACTTGGTCATCTGC R: AGGTAGGTTTGAGGGGGATAC	21
athogen detection			
Canine adenovirus 1	EB	F: CGCGCTGAACATTACTACCTTGTC	41
Capiton adaptations 2		E CUTAGAGUAUTICGTGTCCGCTT	0
Canine adenovirus 2	·	R: TTTTCAAGGGAGGTGCGT	42
Bartonella spo	165-235	E CTTCGTTTCTCTTTCTTCA	43
		R: GGATAAACCGGAAAACCTTC	
Borrelia burgdorferi sensu lato	265N1-235C1	F: ACCATAGACTCTTATTACTTTGAC R: TAAGCTGACTAATACTAATTACCC	44
Canine coronavirus	м	F. TCCAGATATGTAATGTTCGG	45
Canine herpesvirus I	к	F. TGCCGCTTTTATATAGATG B: AAGCGTTGTAAAAGTTCGT	46
Canine parvovirus 2	VP2	F: CATTGGGCTTACCACCATTTCCAACC B: TCAGCTGGTCTCAT	47
Canine distemper virus	N	F. GATAAAGCATGTCATTATAGTCCTAA R: CTTGAGCTTCCGACCCTTC	48
West Nile virus	N55	F. GCMATHAGGTWCATGTGG R: GTRTCCCAKCCDGCNGTRTC	49
Toxoplasma gondii	ITS	F: TGGCGCGTTCGTGCCCGAAAT R: TGCAITTYGCTGCGKYCTTC	40
Leishmania infantum	kDNA	F AAAGCGGGCGCGGTGCTG B: TCCCATCGCAACCTCGGTT	50

Proposed Classification Based on the histopathological and PCR results the following diagnoses were made Non-specific Cardiomyopat . mild hype negative PCR; ary rhythm disturbances: presence of AVB, SVT or VA with no hist ological changes or with interstitial or endocardial fibrosis with negative PCR; ute/subacute lymphocytic myocarditis: kocytes/mm²), with necrosis of non-ischemi ement fibrosis with positive or negative PCR te (> 14 le

- focal lymphoplasmacytic and myocyte degeneratio erline myocarditis:
- focal lymphoplasmacytic infiltrate (> 14 leukocytes/mm²) without evidence of necrosis and in proprior and the second sec
- nic im

- Incl immune-mediated myocardits/inflammatory cardiomyopathy: focal lymphopsimory in inflirter / a K leukoryckychm³ sarcoplasmic vacuolation with replacement or endocardial fibrosis and negative PCR; **incl inflective myocardial disease (CIMD)**: mild hypertrophy with focal replacement or endocardial fibrosis and/or fatty degenerati sarcoplasmic vacuolation with or without focal lymphoplasmacytic infiltrates (≥ 14 leuko sarcoplasmic vacuolation with or witho mm²), and positive PCR.

Statistical Analysis

- size was calculated to be 23 does with UMRD and 6 does with CHD
- size = (1.28v{p1{1-p1} + p0{1-p0}] + 1.96 2p'{1 - p'}])2/(p1 - p0)2 of age and body weight d ed by means of a Shapiro-Wilk
- between dogs with UMRD and dogs with CHD regarding sex, age, and body u th a Fisher ex-act ex-act test (for categorical variables) or Student t test or M mally and nonnormally distributed continuous variables, respectively).
- egression was performed to identify fac-tors associated with the outcout from \ge 1 cardiotropic pathogen by PCR assay).
- gistic regression models were used to evaluate candidate variables (ie, age, sex, body type of cardiac disorder [UMRD vs CHD]) for potential inclusion in the multivariate mo
- with a value of P < 0.1 were included in the multivariate reg
- d 95% CIs were reported to des rariables. Nagelkerke R2 values e explained by the model. No su es of *P* < 0.05 w

results (n = 22)	Dogs with negative results (n = 25)	OR (95% CI)	P value
21 (57)	16 (43)	11.8 (1.3-103.0)	0.02
1 (10)	9 (90)	Referent	NA
5.4 (3.4)	3.7 (2.6)	1.2 (0.9-1.5)	0.07
36.6 (15.5)	31.5 (10.7)	1.0 (0.9–1.1)	0.19
15 (50)	15 (50)	1.4 (0.4-4.7)	0.56
7 (41)	10 (59)	Referent	NA
	results (n = 22) 21 (57) 1 (10) 5.4 (3.4) 36.6 (15.5) 15 (50) 7 (41)	results (n = 22) results (n = 25) 21 (57) 16 (43) 1 (10) 9 (90) 5.4 (3.4) 3.7 (2.6) 366 (15.5) 31.5 (10.7) 15 (50) 15 (50) 7 (41) 10 (59)	results (n = 22) results (n = 25) OR (9% C) 21 (57) 16 (43) 11.8 (13-10.0) 1 (10) 9 (90) Referent 5.4 (3.4) 3.7 (2.6) 1.2 (09-1.5) 3.6 (15.5) 31.5 (10.7) 1.0 (0.9-1.1) 15 (50) 1.5 (50) 1.4 (0.4-4.7) 7 (41) 10 (59) Referent

Limitations

- ✓ Small sample's size and number due to in-vivo diagnosis
 - ✓ Negative results of immunohistochemistry
 - Negative results in case of acute myocarditis
- ✓ Limited number of cardiotrophic pathogen tested
- \checkmark Inability to test blood samples in all patient with myocardial PCR positive
- ✓ Impossibility to correlate if the pathogen isolated from the heart was causing the disease
- ✓ Lack of titers for tick-transmitted diseases, Neospora, toxoplasma and CTnl in all dogs.

Conclusion

- Despite evident limitation due minimal sampling of the right ventricle, endomyocardial biopsy should considered as a promising diagnostic tool in patient with
 Mon familial DCM phenotypes,
 - New onset AVB particularly in young dogs,
 - ✓ Supraventricular or ventricular arrhythmias in patients with no cardiostructural diseases.

Acknowledgments

- ✓ Dr Manuela Perego DECVIM-CA (Cardiology)
- ✓ Dr Paola Gianella DECVIM-CA (Internal Medicine)
- ✓ Dr Massimiliano Tursi group for histological examination
- ✓ Dr Elena Grego group for genomic PCR analysis
- $\checkmark\,$ Referring veterinarians and owners of the dogs

